Versatile one-step route to synthesize high-quality graphene and graphene-nanoparticle composites based on modified polyol process

Rebecca F. Albers¹ (PG), Rafael A. Bini² (PQ), Laudemir C. Varanda^{1,*} (PQ)

¹ Colloidal Materials Group, Chemistry Institute of São Carlos - USP, São Carlos, SP, Brazil. *Ivaranda@iqsc.usp.br
² Federal University of Technology of Paraná, Campus Toledo, Toledo, Paraná, Brazil.

Key words: graphene, graphene/nanoparticles composite, polyol process, FePt, magnetite.

Abstract We described a new and versatile method to synthesize graphene and graphene/nanoparticles composites in one-step route, based on the modified polyol process. The method to synthesize graphene

Introduction

in the polyol medium was adjusted to synthesize

graphene/FePt and graphene/Fe₃O₄.

There is great interest to obtain composites that synergistically combine the unique properties of graphene (G) or graphene oxide (GO) with those from nanoparticles (NP)¹. The modified polyol process is an efficient method to NP synthesis with morphological, structural and chemical composition controlled². The reaction medium in the polyol environment suitable promotes an to the graphenization and to G synthesis from GO. In this work, we have described a new and versatile method for the synthesis of G, G/FePt and G/Fe₃O₄ nanostructures in one-step route based on the modified polyol process. The method can be tuned to synthesis of many G/NP composites.

Results and Discussion

GO was prepared using the modified Hummers method and flocculated with diethyl ether.³ synthesis: in a three neck round bottom flask the GO suspension (7mL, 80 mg) was mixture with the benzyl ether (BE, 20 mL), oleylamine (OAm, 2.7mmol) and 1,2-tetradecanediol (2.7 mmol). The temperature was increased to 100°C (30 min) and to reflux (120 min) under N₂ flux and stirring. G/FePt synthesis: using the same approach, Pt(II) (0.045 mmol) and Fe(III) (0.054 mmol) acetylacetonates were mixture with BE, OAm, and the diol without GO. The system was heated at 100°C (60 min) and to reflux (120 min). Temperature was decreased to 150°C and the GO suspension was injected into the system, which remains at 200°C (60 min). G/Fe₃O₄ synthesis: following the G/FePt approach, OAm was replaced by oleic acid and 0.25 mmol of the Fe(III) acetylacetonate was used. Characterization: X-ray diffraction (XRD), transmission (TEM) and scanning (SEM) electron microscopies, Raman and UV-Vis spectroscopies, and vibrating sample magnetometry (VSM). The polyol medium was effective to promote the exfoliation and reduction of the GO leading to

obtain large graphene sheets. The G/NP composites were successful synthesized in a simple one-step route resulting in G/FePt and G/Fe_3O_4 with NP average diameter of 5 nm and 8 nm, respectively.

Figura 1. Graphene: (a) TEM image, (b) XRD and (c) Raman spectrum; G/FePt: (d) TEM image (e) XRD, and (e) MxH hysteresis loop; G/Fe_3O_4 : (g) TEM image and (h) magnetic hysteresis loop.

Conclusions

G and G/NP composites (FePt, Fe₃O₄) synthesis in one-step were successfully performed by the modified polyol process. The method can be scaled to allow mass production and easily tuned for other NP already successfully reported by polyol process.

Acknowledgements

To FAPESP for the financial support.

¹ Yang, W. et. al, *Carbon* **2016**, *96*, 947.

² Varanda, L. C.; Jafelicci, M., Jr. J. Am. Chem. Soc. 2006, 128, 11062.

³ Marcano, D. C., et. al, Acs Nano **2010**, *4*, 4806.